Book Review Roundup

Run -- don't walk -- to your nearest bookstore!

Run — don’t walk — to your nearest bookstore!

It’s now been five months since my book The Value of the Moon was published and I am happy to report that it has been well received.  Let us hope that more people see the value of lunar return and the development of cislunar space as time goes on.

Here is a very complimentary review post recently published by a blogger named “sagansense”:

I just finished ‘The Value of the Moon’ by geologist/lunar scientist Dr. Paul D. Spudis, and I implore you – yes you – to read this cover to cover, as it illuminates the past 50+ year debacle that is the American space program; notably, the human spaceflight sector, and why the Moon – not Mars – is the logical choice for humankind to gain a foothold to the rest of the solar system.

I couldn’t have put it better myself!

Other reviews and mentions on-line:

Dave Eicher in Astronomy magazine.  Thanks, Dave for your very nice review — it was the first one published!

Frank Morring in Aviation Week and Space Technology.

Dennis Wingo at his blog.

Astronaut Tom Jones in Aerospace America.

A discussion of the book with Bruce Dorminey of Forbes magazine.

Jeff Foust at The Space Review.

An interview with me about the book at

A summary/rating of the book from the “Get Abstract” web site.

Author interview at

A recent appearance on The Space Show, discussing the book with David Livingston.

Three radio appearances on NPR, from various stations around the country:

Houston Public Radio

Jefferson Public Radio (northern California)

The Joy Cardin Show on Wisconsin Public Radio

One final (related, but non-book) note:  Tony Lavoie and I recently presented a revised version of our lunar return architecture at the AIAA Space 2016 annual meeting, held this year in Long Beach CA.  Click HERE to read the paper.

Posted in China space program, Lunar development, Lunar exploration, space industry, space policy, space technology, Space transportation | 26 Comments

Lowering the Cost of Human Spaceflight

Three approaches, each with their own advantages and disadvantages.  My new post up at Air&Space, for your consideration.  Comment here, if desired.

Posted in Lunar development, space industry, space policy, space technology, Space transportation, Uncategorized | 45 Comments

Not Vaunted, Not Clever and Not Working – The State of America’s Space Program

Only 7 years away -- book your passage now!

Only 7 years away — book your passage now!

Recent events have focused our attention yet again on the gap between promises made and the reality of our national civil space program’s performance. It’s easy to see, if one cares to look at the big picture, that while our space effort is slowly sputtering to a halt, many steadfastly hold to an unsustainable, unworkable program. So convinced are they that this stark reality, though patently true and verifiable, isn’t staring them in the face, that they ignore the obvious gaps, or worse, dismiss them out of hand and work against a knowable course correction that could fix the problem.

In September 1962, then-President John F. Kennedy gave a stirring speech at Rice University in Houston.  In it, he called for (and outlined) the need for a national determination to put a man on the Moon. Clips of his speech are often re-played, as it is thought to epitomize the spirit of the Apollo program. Indeed, there was a national “spirit” and “right stuff” in that distant era – one not concerned with the Moon or with space per se, but rather, driven by the desire to defeat the Soviet Union’s goal of conquest here on Earth, by winning a technology race in space. A comparable zeitgeist does not now exist.

This week, Dava Newman, the Deputy Administrator of NASA, will also appear at Rice University. While reading the description of Newman’s forthcoming appearance, I was struck by how much of what is asserted in the text is simply untrue. There is no “Journey to Mars” except in the minds of some agency bureaucrats. The supposed three-stages of the “Journey” – low Earth orbit (LEO), the cislunar “proving ground,” and traveling to Mars – hypes new technology and capability development, exemplified by the existing LEO phase featuring missions to the International Space Station (ISS); missions currently gathering data on long-term spaceflight, particularly in terms of deconditioning of the human body. But the time required for a round-trip to Mars will not be simulated; the recent “Year in Space” by astronaut Scott Kelly covers roughly only a third of the expected total duration of a human Mars mission.

Along with important questions remaining about how people will survive long-duration missions in space, there also is a lack of knowledge and experience in long-lived, reliable operating systems (as evidenced by continual breakdowns of equipment on ISS). Some problems are fixable (and fixed) by its occupants, but the more serious ones require parts and re-supply from Earth, an option not available to those on their way to Mars. If a system cannot be fixed en route, or if the parts needed for a fix are not onboard, the crew is left without options. Don’t expect them to turn around and come home in a heroic “Apollo 13”-type scenario, as an abort-and-return mission would likely involve weeks to months, putting crew survival in grave jeopardy.

NASA claims to be developing spaceflight to Mars in which “explorers will be practically independent of spaceship Earth.” In fact, they are pursuing exactly the opposite architectural approach. All pieces – equipment and supplies – of NASA’s “Journey to Mars” are to be launched from Earth. NASA states that the forthcoming Space Launch System (SLS) heavy lift rocket will enable and provision this journey. What they do not make clear is that even as large as this SLS rocket will be, multiple launches will be required to conduct a single human Mars mission (at least 8 and possibly as many as 12). This orbiting hardware is then assembled in space into a spacecraft before departing for Mars (launch windows occurring only every 26 months). To assemble and fly such a massive, complex (and as yet not fully understood) space system is a non-trivial problem for whatever entity attempts it.

Some say NASA needs to get out of the space transportation and launch business and buy commercial, but what of these “New Space” promoters, those intrepid entrepreneurs and capitalists boldly pioneering business in space? Here too, there is less than meets the eye. It’s been almost 12 years since SpaceShipOne flew twice to the edge of space and won the coveted Ansari X-Prize for flying the first repeatable, private spaceflight. And though we hear a lot about “space tourism,” the only paying customers flown into space to date got there aboard a Russian Soyuz. It was said at the time (and continues to be believed in many quarters) that prizes are the incentive needed to get the ball rolling – by seeking a monetary trophy and garnering technical acumen and business credibility, a torrent of innovation and industry activity will bring a new era of low cost, personal spaceflight. Yet, here we sit, still dreaming of that golden age.

Despite battling these business profile headwinds and entrepreneurial wind sheer, the salesmanship of New Space continues apace, with all of its variety and ferocity. The public is inundated with articles describing what the New Space sector will achieve in the next few months-to-years – promised future breakthroughs that are greatly outstripped by endless promotional hype. There are no hotels for space tourists on orbit and no way to get any inhabitants there if there were. The Google Lunar X-Prize has had its deadline extended three times (currently to the end of 2017), but no launch date for a first attempt to win the prize has been set. Some promising New Space companies have had significant layoffs (possibly as prelude to going out of business) or have suffered devastating technical setbacks.

Which brings us to Space Exploration Technologies Corporation – SpaceX, billed as the company endowed with the vision, drive and capability required to lead humanity to its second home in the universe – Mars. Yet, as with most New Space claims, what has been promised is much greater than what has been delivered. SpaceX’s Falcon 9 launch system suffered another setback this week when their vehicle and payload exploded on the pad. Accidents happen (and have happened) to the best of those who work in the business of space, and each time these accidents (and subsequent investigations) happen, we are reminded why leaving Earth isn’t routine – because it’s hard and expensive.

Much of the accomplishment of SpaceX is incremental rather than transformational. The development of a flyback booster receives endless press coverage, but to date, none of the company’s used stages have re-flown. Billed as lowering costs (and building clientele), reusability is marketed as a breakthrough approach to affordable space access from Earth (though SES, based in Luxembourg, may want to reconsider their announcement about being the first to fly a payload on a used Falcon 9 first stage after this week’s accident). By SpaceX’s own estimates, if recovery of booster stages becomes workable as a complete end-to-end system, they envision a reduction of “up to 30%” in the price of launch. (That “up to” is always significant in public pronouncements – usually, it can be translated as “a lot less.”) Another SpaceX innovation is the use of super-cooled propellant (“slush liquid oxygen”) to boost performance. It does, but only at about the 8% level. It is not clear whether either of these innovations will revolutionize space access through a reduction in cost or an increase in performance, and of course, at what cost to reliability.

What is clear is, to gain the lion’s share of the market, it’s vital to have and keep positive media attention focused on your business by heralding the most insignificant of events (or plans for future events) in order to drive business your way and squeeze out your competition. An example is the unveiling of the manned Dragon 2 spacecraft in 2014 (which was a mock-up, not a piece of flight hardware). This event was carried live on streaming video – passionately and professionally praised in a wide variety of media. Yet we have heard little about it since. Instead, we get reliably favorable news stories about forthcoming SpaceX PR events – next up is Musk’s presentation this month (at the International Astronautical Congress being held in Mexico) about his just-around-the-corner plans for a human colony on Mars. One story promotes Musk’s corporate claim that the first flights for this milestone in human history will occur in the year 2024 (this from a company that has yet to announce the date of its first manned mission to LEO).  Simultaneously, we also have NASA’s “Journey to Mars” being advanced by the media.

Ordinarily, ludicrous and ridiculous public claims are mercilessly disassembled and destroyed by that watchdog of freedom – the American press.  So we need to ask, has the media bungled their job when questioning the viability of SpaceX and Musk’s promotional strategy with breathless, softball coverage of virtually anything they announce? Like the fictional FBI agent Fox Mulder on the TV show “The X-Files,” New Space fans “want to believe” – and apparently, many reporters in the space media are fans. “We love SpaceX,” begins the honest headline of a recent story by Eric Berger of Ars Technica, who then wisely advises Elon Musk to focus on the near-term and the achievable in space, and to cut back on the hype and the grab for glory.

That does not appear to be a good marketing strategy though, because fortune and fame hinge on continually selling the dream of space. And in that sense, SpaceX fits perfectly with the mindset of their governmental predecessor and current business partner, NASA. Both remain bound to a similar blueprint of promoting a distant dream (humans on Mars) rather than doing what is necessary in our national interests (“not because it is easy but because it is hard”) – the work required to build and perfect real systems (reliable flight hardware to LEO and cislunar space) that will allow us to achieve a permanent foothold off planet, while maintaining and challenging our important technology sector. They are also alike in their apparent disinterest in pursing a return to the Moon – a place both known and reachable – where building a true Earth-independent architecture through the use of lunar material and energy resources, holds the promise of giving us affordable and routine access to space beyond LEO.

So, regardless of the details Elon Musk announces in Mexico later this month or Dava Newman’s comments on NASA’s “Journey to Mars” next week at Rice University, color me dutifully skeptical.

Posted in Lunar development, space policy, space technology, Space transportation | 81 Comments

Virtues of the 90-Day Study

Overblown? The 90-Day study, in a nutshell.

Overblown? The 90-Day study, in a nutshell.

Broach the topic of the “90-Day Study” with almost any random person involved with space for more than 25 years and you’re likely to provoke a reaction akin to showing Dracula a crucifix. This document is now offered as a cautionary tale about what flows from a devastating report – a bloated, impenetrable disaster of transcendent magnitude that doomed President George H.W. Bush’s Space Exploration Initiative, the 1989 attempt to fashion a set of long-range strategic goals for America’s civil space program. Released to near universal disdain and condemnation, its dread name lives in infamy in space history circles.

To understand what is behind all this opprobrium, I’ll begin by describing the historical circumstances under which this report was written, followed by the reasons it took the form that it did and what truth, if any, lies in the rather overblown reaction to it described above.

Twenty years after our space program’s peak during the Apollo effort, and despite President Reagan’s initiation of the Space Station Freedom project in 1984, our space program was under fire. The tragic loss in January 1986 of the Space Shuttle Challenger with her crew of seven led to critical reappraisals of the nation’s human spaceflight program. The fact that the accident seemed to result from hubris and incompetence only increased the volume of criticism. In time-honored Washington fashion, it was thought that a committee of experts should examine our space program and recommend a long-range direction. As it turned out, such a group was finalizing its report and mere months from issuing their results. The National Commission on Space (a.k.a. the Paine Commission) report (May 1986) was a grand vision of orbiting space cities, lunar and martian bases, and human expansion into the Solar System. Its unfortunate timing – along with its marked science-fiction flavor – led it to be largely ignored by policy makers in government.

However, the Paine Commission was not the only group working to devise a new direction for space. Several parallel efforts to plot a future course for NASA were also underway, both within and outside the agency. Since the early 1980s, a movement to examine the potential benefits of a return to the Moon had been studied by a group at the NASA Johnson Space Center (JSC) in Houston. Simultaneously, another effort was studying human missions to Mars (there had been no missions of any kind to Mars since the Viking explorations of the mid-1970s). These two streams converged within the agency in the Office of Exploration, which conducted paper studies on how to advance human spaceflight beyond low Earth orbit. An internal NASA group chaired by astronaut Sally Ride released a report to the administrator in 1987 that outlined the possible benefits and approaches for a variety of these initiatives, including human missions to the Moon and Mars. This report and the variety of work being done by NASA and others outside the agency provided the backdrop for a Presidential decision.

On July 20, 1989, the occasion of the 20th anniversary of the first landing on the Moon by Apollo 11, President George H.W. Bush gave a speech at the National Air and Space Museum in Washington that called for a return of people to the Moon – “this time to stay” – to be followed by a human mission to Mars. This policy proposal was dubbed the Human Exploration Initiative (HEI, later changed to “Space Exploration Initiative,” or SEI). The SEI included both robotic and human missions designed to extend human reach beyond low Earth orbit (LEO). SEI was largely the brainchild of the revived National Space Council, a White House-level policy group reporting to Vice-President Dan Quayle. Both Quayle and the Council were strong advocates of revitalizing the space program with a challenging set of goals. NASA was directed to produce a report within 90 days – a report that was to outline possible mission architectures and identify the technologies needed to accomplish those goals. The report effort was centered at JSC largely because that center’s Exploration Program Office had done the most detailed initial analyses of the problem. JSC Center Director Aaron Cohen was in charge of the study, with day-to-day operations headed up by engineer Mark Craig.

This intensive study effort took place during the months of August-October 1989, with the report issued late in November of that year. Upon its briefing and release to the National Space Council, the brickbats and invective began: unimaginative, bloated and “Battlestar Galactica approach” were just some of the descriptors attached to the report. Historical legend holds that because the report was so awful, the Space Council immediately engaged with a group at the Department of Energy’s Lawrence Livermore National Laboratory to devise and offer a counter-strategy – the “Great Explorations” scheme of Lowell Wood that used inflatable spacecraft and was rumored to cost less than one-tenth the amount of money estimated for the heavily panned 90-Day Study approach.

So just what did the 90-Day Study advocate? In brief, it described the vehicles and technologies needed to undertake human lunar and martian missions. It assumed the continued operation of the Space Shuttle, with new missions beyond LEO staged from Space Station Freedom (currently, the International Space Station). The new vehicles necessary for trans-LEO missions were outlined and described, including a Shuttle-derived heavy lift vehicle and a reusable cislunar transfer stage to send payloads to the Moon (using an aerobrake for Earth return). It also called for research on a nuclear powered Mars transfer stage and nuclear reactors for surface power systems on both the Moon and Mars. Extensive robotic precursor missions were outlined, including global surveys from orbit for the Moon and Mars, geophysical networks for the martian surface, a robotic sample return from Mars to certify the planet safe for human landings, and deployment of an infrastructure of communications satellites in martian orbit.

This list of assets was comprehensive, and yes, expensive. However, what was being described was nothing less than a permanent human foothold off-Earth. Moreover, this system of space assets and transportation infrastructure would be acquired and placed into operation over the coming three decades. The Space Council was disappointed that cheaper options were not presented, but it isn’t clear that had been part of the mandate for the study that the Council ordered from NASA. In contrast to claims that no architectural options were presented, five “Reference Approaches” were described that varied the phasing and dates of initial operational capability for the lunar base and Mars mission. In this regard, the biggest criticism of the report is that it took President Bush’s SEI speech as its policy guidance – “back to the Moon to stay and then to Mars.” This seems a strange criticism of a report – that it followed a directive given by the President.

Knowing how the 90-Day Report came about and how it was received, what is so objectionable about the report? As I read it, it outlined a step-wise, incremental approach to conducting lunar and martian missions, whereby existing assets are incorporated – employing continuity of purpose to build sustainability – and not discarded. Shuttle and Station would both support the missions beyond LEO and become integral parts of the spaceflight system. I contend that the architectural framework laid out in the 90-Day Study is exactly how we should approach going to the Moon and conducting missions to Mars. The report was criticized on the one hand for being “old school” and unimaginative in its use of proven technology, but then simultaneously criticized as taking too much risk in its advocacy of some advanced technologies, such as nuclear thermal propulsion and aerobraking into martian orbit.

So which is it – too Buck Rogers or too stodgy?

I can agree with the criticism that the architectural details of the report contained a lot of featherbedding by various widget-makers throughout the agency, but there was nothing in it that a good scrub by some hard-nosed systems engineers could not have fixed. Yes, it was Christmas-treed, but by looking past those superfluous (and expected) tinsel-hanging efforts, one sees good roots and branches beneath. The basic approach harkened back to the original von Braun architecture – shuttle, station, Moon tug, Mars spacecraft, a stepwise, incremental, cumulative progression to ever-farther regions of the Solar System. In contrast to some opinions, the technical approach laid out in the 90-Day Study was the very antithesis of the Apollo approach – the “all-up”, single-shot, self-contained missions to dash somewhere, plant a flag, and return, only to learn that your program’s been cancelled the day after your ticker-tape parade.

The cost numbers associated with the plan outlined by the 90-Day Study are subject to much confusion. The report itself contains no cost numbers whatsoever, the decision having been to include the estimates in a separate document, presumably on the fear that they would be misinterpreted (which happened). The numbers came from two different cost estimation models (then in use by JSC and NASA Marshall Spaceflight Center in Huntsville) and ran to about $470 to $540 billion (FY1990 dollars), over a 30-year period of execution. These numbers included a 55% reserve for unexpected difficulties or accidents. While such budget numbers are substantial (the agency budget in those years was about $15 billion/year), spending such sums on NASA would still not have exceeded about 1.5% of the federal budget – this at a time when massive cuts in defense spending associated with the alleged “peace dividend” produced by the end of the Cold War were looming. Such a sum of money would have been about the same amount spent by the Department of Energy during this 30-year period. The idea that we “could not afford it” is simply ludicrous, especially as one motivation for devising the SEI in the first place was to partly maintain the industrial-technical infrastructure used to defeat the Soviet Union.

In the historical telling, the story goes that upon receipt of the 90-Day Study, the Space Council was so aghast that it sent the report to the National Research Council (NRC) for evaluation (and presumably, dissection). If the thought was that the NRC would trash it, such hope was misplaced. The NRC evaluation, while not uncritical of some details, largely acknowledges that the 90-Day Study offered a reasonable, relatively low risk approach to carry out the Presidential mandate. The White House then set up an “outreach” program, asking for the best technological ideas from many sources in order to show just how off-base the 90-Day Study was. A special group was gathered to evaluate these ideas – the “Synthesis Group” led by astronaut Tom Stafford (of which I was a member). After a year of synthesis and analysis, the group issued its findings: there are no “magic beans” technologies. To carry out the President’s Moon-Mars initiative, heavy lift vehicles, nuclear propulsion, extensive robotic precursor missions and many other items found on the checklist of the “overblown” 90-Day Study, were needed.

What about Livermore’s “Great Explorations” idea? The use of inflatable vehicles for human spaceflight doesn’t actually solve the fundamental problem of trans-LEO missions: most of the mass of the vehicle on departure consists of propellant, not habitats or transit vehicles. Moreover, inflatables have their own technical issues. Interior supporting structures are complex mechanisms and potential fail-points during deployment in space. The real problem solved by inflatable spacecraft is not mass, but payload volume – in the 1990s, large diameter modules could not fit on existing expendable launch vehicles or inside the payload bay of the Shuttle. Supposedly, by using inflatables, we would avoid the huge expense of developing a new heavy lift vehicle. But even this criticism is not valid, in that development of the unmanned Shuttle side mount launch vehicle would have solved this problem at relatively low cost (most of the then-existing infrastructure could be used), as well as providing a way to get massive pieces into orbit in single chunks.

So now, 25 years after the release of the “disastrous” 90-Day Study, and in light of current events, this study deserves another look. It is not a perfect document, containing some superfluous elements and questionable cost estimates, but its basic architecture uses exactly the type of incremental, stepwise, cumulative approach we need (and more and more are calling for) if we are ever to build a sustainable deep space transportation system. One final aspect of the report is notable: the 90-Day Study was the first agency architecture to incorporate resource utilization (ISRU) – specifically, the production of oxygen from lunar regolith (oxygen is 4/5 of the mass of the total propellant load in a LOX-hydrogen system). This resource utilization aspect of the 90-Day plan was incorporated prior to any knowledge of the existence of lunar polar ice (a game changer that would have been soon discovered anyway from the robotic precursor missions planned as part of the SEI). So once again, the 90-Day Study is, in many ways, well in advance of current plans.

I urge you to read the 90-Day Report and judge its merits and faults for yourself. It’s tragic that so much written about it inaccurately describes its content, or at a minimum, fails to provide any historical context for why the report advocated certain approaches. It is remembered as a despised, failed report, rejected by those who requested it and to this day, misunderstood through ignorance of the facts. It contained the bad news (and nobody likes to receive that) that there are no magic beans to climb to the stars – it will require a variety of complex, difficult and (yes) expensive pieces to establish the spacefaring system that we need. Inflatable spacecraft were the magic beans of the 1990’s space program – today’s space program has its own version of them. The cold hard realities of human spaceflight cannot be denied and the truth of that always comes out in the end.

Posted in Lunar development, Lunar exploration, Lunar Science, planetary exploration, space industry, space policy, space technology, Space transportation | 32 Comments

China continues its Long March to the Moon

Soon to be joined by another nation's flag? Happy July 4th!

Soon to be joined by another nation’s flag? Happy July 4th!

I have a new post up at Air & Space discussing some recent developments in the Chinese space program and what they might mean.  Comment here if you are so moved.

FYI, below are some of my previous posts on the Chinese space program in general and their lunar efforts in particular:



A&S Jan 2012        China’s Long March to the Moon

A&S June 2012      China and the Moon

SLR June 2013      China in Space: A Threat or Not?

SLR Nov 5, 2013    China, America and the Moon: Boldness and Abdication

SLR Nov 30, 2013  China in Space

SLR March 2014    Surrendering in Space

SLR April 2014       International Repercussions [Part 2] The Power Vacuum

SLR Sept 2014       American Space Program Reflects Standing in the World

A&S Nov 6, 2014    China is Now Positioned to Dominate the Moon

A&S May 2015        China and the “Dark Side”

Posted in China space program, Lunar development, Lunar exploration, space policy, space technology, Space transportation | 6 Comments

Delusions of a Mars Colonist

Abracadabra! We turn Mars into a second Earth (National Geographic Society)

Abracadabra! We turn Mars into a second Earth (National Geographic Society)

A perennial talking point promoted by the space media is the belief that to save humanity, we must make a beeline to Mars. Supposedly, Mars is so “Earth-like” that it is the natural second home for humanity in space, a place to assure species survival in the event of some planetary catastrophe (such as a large meteorite impact). Because Mars could be “terraformed” to become even more Earth-like, we must focus our principal space efforts on undertaking human missions to Mars – ASAP (for the last 45 years).

For any sustainable human presence off-Earth to be successful, one must develop the means to arrive, survive and thrive. Most commentary on human Mars missions has focused entirely on the requirement to arrive because many of the technical problems associated with this must-accomplish first task remain unresolved. Presently, we don’t know how to build fault-tolerant, in-space serviceable systems necessary to support human life over the course of a multiple-year-long Mars mission. Protecting the crew from exposure to constant high-energy cosmic rays and sporadic solar particle events requires some means of shielding the vehicle – a daunting prospect in terms of mass and power. The means of a safe entry, descent and landing of a spacecraft (having mass of tens-of-tones) onto the martian surface must be developed, as these are currently completely unknown “details.” And if it the trip is to be more than one-way, then provisioning, refueling and launching for the return home must be sorted out too. These issues must be resolved before a crewed mission to Mars can take place.

For the moment, I’ll ignore these non-trivial “arrival” issues and focus instead on the two remaining objectives – “survive and thrive.” Only rudimentary attention has been given to how humans will survive on the martian surface. Certainly, additional problems will come up that we cannot know now, but the ones we do understand are formidable enough. In contrast to the press it receives, the martian surface is a cold, alien, hostile environment – much more dangerous than free space or even, in some respects, the lunar surface. Although Mars does have an atmosphere, it is composed almost entirely of carbon dioxide and has less than one-hundredth the surface pressure of Earth. While this thin atmosphere protects the surface from the smallest micrometeoroids, it does not shield it from the highest energy cosmic rays or solar ultraviolet (UV) radiation. In addition, because Mars has no global magnetic field (and we cannot create one), galactic cosmic rays will always shower the surface, making underground dwellings a must – not in transparent domed cities on the surface, as portrayed in science fiction novels and films.

Like the Moon, the surface of Mars is covered with a fine dust, but unlike lunar soil, martian dust is chemically reactive – a toxic mix of perchlorates and peroxides that, combined with the high flux of solar UV and galactic cosmic rays to which the surface is exposed, makes for an almost completely sterilizing environment. The Viking landers flown 50 years ago could not find any organic matter (i.e., compounds made of carbon, nitrogen and hydrogen) in martian soil in any concentration at the parts-per-billion sensitivity level. The scenes in the recent film The Martian (held up by NASA as a model of scientific veracity and prediction) in which the astronaut fertilizes the martian soil and grows potatoes, is complete fantasy – we simply do not know how to alter the soil chemistry of Mars, fertilize it with organic matter, and then grow radiation-tolerant plants quickly enough to support a human community, let alone a single astronaut.

Water is thought to be present on Mars, so clearly supplying water would be no problem. Or would it? The upper surface of Mars is covered by rock and dust, but ground ice is present in many locations at depths between a few meters to several tens of meters. Subsurface ice could be reached by drilling or by setting off an explosive charge. Martian water is likely to be saline, which will necessitate its distillation for human consumption or agriculture, requiring more electrical power and adding complexity to surface systems.

Human communities need energy to do almost anything and energy production on Mars is a significant issue. Mars is farther from the Sun than the Earth is, so solar panels will generate only about half the energy (so at least twice the collection area will be needed). Because there are frequent dust storms on Mars, solar panels will require regular cleaning to assure peak power production; such a task is challenging for very large areas (thousands of square meters) of solar arrays. The gravity of Mars (0.38 of Earth) is more than twice that of the Moon (0.16 of Earth) and landing large masses of supplies and infrastructure on Mars is difficult. Perhaps solar arrays can be manufactured from local materials on the martian surface but as we do not know the surface chemical composition of different localities in detail, we do not know how difficult this might be. The obvious solution to these difficulties in energy production is to deploy a nuclear fission reactor; the problem is that no reactor of suitable size for use in space exists.

So aside from the inconvenient facts that we don’t know how to safely make the voyage, how to land on the planet, what the detailed chemistry of the soil is, or if we can access potable water, whether we can then grow food locally, or how to build habitats to shield us from the numbing cold and hostile surface environment, don’t know what protection is needed due to the toxic soil chemistry, or how to generate enough electrical power to build and operate an outpost or settlement – in spite of these annoying details that make this idea prohibitive, the creation of a Mars colony within a decade is marketed to the public as if the plans had already been drawn up.

But let us say for the sake of argument that we have addressed the first two tasks adequately – we have arrived and survived. How do we “thrive” on Mars? Of all the notions promulgated in the media about future Mars colonization, this last element is the one that is always ignored. With flashy artwork depicting futuristic cities, sleek flying cars, and lush green fields resplendent under transparent crystal domes (in startling contrast to the red-hued surrounding desert of the martian surface) it is simply assumed that a human colony on Mars will evolve into some kind of off-Earth utopia.

But how will these future Mars inhabitants make a living? And by that, I mean what product or service will they offer that anybody on Earth will want? If you think that the answer is autarky (complete economic isolation and self-sufficiency), then you are imagining an economy (and likely, a political state) in which North Korea is a free market, pluralistic paradise by comparison. People who migrate to Mars need more than food and shelter – they will need imports from Earth, material and intellectual products designed to enrich and refine life on the frontier. What will they have of value to trade or to sell for these imports?

We do not know if Mars contains anything that would have economic value on Earth. Mars has had a complex geological evolution, so we might expect the formation of ore deposits, possibly of substantial value. But even if this is true, we have no idea where these deposits occur or if they are accessible for mining and refining. Martian products must be of sufficient worth so as to merit their transportation back to terrestrial markets, which would require their launch out of the substantial Mars gravity well and back into the even greater gravity well of the Earth. Much is made of the possible economic value of “information,” but it is not clear that Mars is particularly rich in factual data marketable to those back on Earth, although a martian pioneer might have desperate need of it – which would make them their own “customers” and exacerbate the economic disparity of the colony to an even greater degree.

Colonies are not founded in some far-off land because they “look cool” or because some plutocrat wants to retire there. They are established primarily for two reasons: power projection and/or wealth creation. Small, barren islands or isolated localities might not offer much in the way of wealth, but their strategic value might be immense (e.g., Gibraltar). On the other hand, the New World was often more trouble than profit to most European states in the immediate aftermath of Columbus’ discovery. But once the gold and silver started flowing, colonists soon followed and pursued profitable and sustainable endeavors once they arrived and survived. The idea of a sustainable space settlement requires the creation of some kind of market – either economic or strategic – for whatever they find or produce there. Such might be achievable in free space (e.g., the generation and sale of space solar power) or on the Moon (e.g., the production of water to fuel a permanent space transportation system). Mars is too far away and relatively inaccessible to serve strategic ends, and an economic driver has not been identified – other than reality TV to observe any surviving arrivals as if they were zoo creatures (“Mars Survivor!” Who gets voted out of the airlock this week?).

Of all the “thrive” concepts yet advanced for space settlements, the idea of “terraforming” Mars (i.e., making the martian surface conditions like those of the Earth) is the most unbelievable. In essence, this is a proposal to manufacture an Earth-like environment on a planetary scale – a technical task we can barely manage within the confines of a single, small spacecraft. Yet some blithely speak of altering a planet’s atmosphere, hydrosphere and crust to make a “second Eden” where humans can roam free and settle widely. The unknowns involved in such an undertaking are not simply monumental, they are literally inestimable – to borrow a phrase, “we don’t know what we don’t know.” We are still uncertain about all of the factors that control and influence Earth’s climate and habitability, let alone know enough to manipulate the evolution of an alien planet toward some desired end. Spurring imaginations, this fantasy future is always depicted in beautiful artwork, where colonists inhabiting the ancient, parched red planet, see a world gradually being overtaken by shades of blue and green. We just need to go! This is science fiction indeed.

This new delusion – Mars as the New World – illustrates better than almost anything else the anemic state of the American space program. This debilitating condition allows for patent nonsense to be seriously peddled to a credulous, compliant and negligent media who will eagerly print virtually any headline or story.   The space community needs to rethink how they communicate the truth about our space future to the public (and to future engineers and scientists) if they seriously plan to go anywhere in the future.

Posted in Lunar development, planetary exploration, space policy, space technology, Space transportation | 34 Comments

The Moon is Again Within Reach – Let’s Grab (and Hold On To) It

Captivated by the Moon 47 years ago. Are we due for a repeat? (Mad Men/AMC)

Captivated by the Moon 47 years ago. Are we due for a repeat? (Mad Men/AMC)

Tomorrow is the 50th anniversary of the trailblazing robotic space mission to the Moon – Surveyor 1. With prophetic timing, a recent political development (along with various and sundry news reports and another anniversary) indicates a renewed interest in the Moon as a destination. This hodgepodge includes: specific funding and program direction by the U.S. House of Representatives in their 2017 NASA appropriations bill, news stories about Russian and Chinese lunar missions supposedly to be flown in the near future, and a piece on President Kennedy and the Apollo program (last Wednesday, May 25, was the 55th anniversary of Kennedy’s special appropriations speech to Congress, asking for the lunar landing goal). Under ordinary circumstances, these disparate threads might be random noise, but taken together, they may signal a possible “new” direction for our civil space program.

The most significant event is the new House appropriations bill, which not only terminates work on the absurd Asteroid Retrieval Mission (“no funds are included in this bill for NASA to continue planning efforts to conduct either robotic or crewed missions to an asteroid”) but specifically directs NASA instead to “develop plans to return to the Moon to test capabilities that will be needed for Mars, including habitation modules, lunar prospecting, and landing and ascent vehicles.” This development should come as no surprise, as many witnesses at numerous Congressional hearings and some Members themselves have repeatedly expressed puzzlement, frustration and dismay with the ARM concept. Congress has repeatedly attempted to steer NASA back toward the lunar goals of the 2004 Vision for Space Exploration – in the 2010 Authorization, both cislunar space and the lunar surface were specified as destinations for human missions, direction that the agency adamantly ignored.

This new funding action follows earlier direction in this year’s authorization bill to develop a cislunar habitat – a small facility to be located somewhere near the Moon – either in lunar orbit, or at one of the Lagrangian points. The purpose of such a facility would be to learn about the difficulties and opportunities of deep space habitation – including life support, transport and operations, and mitigation of the hard radiation environment. Having near instantaneous radio response, crew members could control an exploration rover on the lunar surface. Such capability would allow us to conduct geological fieldwork by creating the sensation of telepresence – the simulation of existence (being there) at a remote location. Additionally, a deep space habitat could serve as a jumping-off point for future missions to low lunar orbit and to the surface. The facility could eventually host future re-fueling, servicing and other activities, and with them, the crucial beginning of a permanent spacefaring system.

While Congress has been working to re-vector America’s space program back on the correct path, other nations have not remained idle. News reports appeared this past week about both Russian and Chinese lunar efforts. Russia claims to be planning for human lunar landings within the next decade, culminating in a lunar base by 2030. As is often the case when space plans are revealed in the media, it is difficult to get a full picture of the planned Ryvok spacecraft from its description, but it will be launched in several pieces and marshaled at the ISS for assembly and departure. In an innovative and encouraging twist, on return to Earth, Ryvok will deploy an umbrella-like device and use aerocapture to slow itself back into Earth orbit, capability that could make the vehicle a reusable Earth-Moon transfer system. Although news stories describe trips to the lunar surface, I think the stories are exaggerated, or at best, incomplete. You need about 7 kg of mass (mostly propellant) in LEO to get 1 kg of payload softly onto the surface of the Moon. And to come home, you need to bring your return vehicle (and the fuel for it) with you – at least initially. The description in the news makes it sound like this vehicle is an orbital spacecraft – one that could take both cargo and crew to lunar orbit. A separate vehicle might be needed for decent to the surface and return, but without the technical details, it is impossible to fully describe the Russian architecture.

China has long planned a sample return mission from the Moon (currently scheduled to take place with the Chang’E 5 mission next year). But the new announcement calls for a follow-up sample return mission from “the north and south poles of the Moon.” It is not clear whether the intention is to collect material from both poles or simply from one of them. No landing sites were announced, but one must assume that they will attempt to land in some location likely to contain water ice, in order to examine and characterize those deposits. New interest in polar volatiles by the Chinese is highly significant. They have already demonstrated their intention to use cislunar space for a variety of purposes. It would be wise to carefully monitor their intentions and activities there.

These reports are coming out around the occasion of the 55th Anniversary of President John F. Kennedy’s 1961 speech to Congress announcing the “man-Moon-decade” goal of the Apollo program. A recent analysis notes this anniversary and offers some policy conclusions from that effort. Author Eric Berger contends that while the Apollo program was a magnificent achievement, we have been “stagnant” in space since that time. A basic misunderstanding with this analysis is found in the title of the piece: Kennedy’s vision for NASA inspired greatness, then stagnation. The Apollo program was not a “vision for NASA” – it was a vision for the nation, one driven by goals and objectives totally unrelated to spaceflight. The idea that we have been “stagnant” in space for the last 40 years is only valid from the perspective of a national crash program (Apollo), underwritten by a blank check.

What was Kennedy’s vision? JFK was the consummate Cold Warrior, who believed that the Soviet Union must be confronted and overcome wherever and whenever they were encountered. Berlin, Cuba, and Vietnam were battlegrounds of ideas in the war for the hearts and minds of the non-aligned countries of the world. With the advent of Sputnik, Kennedy saw the Moon as a new battleground. The goal of Apollo was not to go there and then move onward to the planets – it was to be the first on the Moon, removing any doubt sown by Sputnik and Gagarin that the United States was somehow lagging in its technological capabilities. Given these Cold War origins, it does not follow that Apollo is, or should be, any kind of a template for future spacefaring efforts. It was a crash program designed to answer the requirements of a then-current, perceived world crisis, one that, through the victory of Apollo, saw the U.S. prevail years later, when we won the Cold War.

After Apollo, many in the space community believed that we could take the new capabilities given us by that template and go to Mars. That was never in the cards, then or now. Unlike Apollo, there is no geopolitical objective that would marshal the will of Congress and the nation to expend the resources needed to bludgeon the technical problems posed by such a mission into submission – as was done for the Moon. (Don’t know how to rendezvous in space? OK, we’ll learn how. Can’t build a computer small and light enough to navigate to and from the Moon? OK, we’ll design and build one.) That technical capability – and the Cold War industrial infrastructure necessary to support it – is gone (though it spawned much of today’s technology). To go into deep space today requires a different approach: the incremental building of a space-based infrastructure designed for permanence and reuse.

We’ve spent the last 40 years in LEO because after Apollo, NASA returned to the Wernher von Braun template of incremental extension of human reach. This model consists of four simple steps: LEO, space station, Moon tug, Mars mission. We’ve only completed the first two steps – building a cislunar transportation system is the next logical step. Those who advocate human missions to Mars as the “next goal” are abandoning the von Braun paradigm for the Apollo model (which so far, has given us 40 years in LEO). Von Braun himself recognized that Apollo was a side-step in the long-range exploration and permanence of humanity in space, but he supported it because he also knew the stakes of the geopolitical race. He believed we would use Apollo hardware to implement an incremental approach. But von Braun (along with many others) did not foresee that such a program was unsustainable without a political imperative (and the necessary fiscal resources). Although we have spent roughly the same amount of money on space in the last 40 years as we did on Apollo (and seemingly have gotten less for it), it is important to understand that in federal programs, it is not the total amount of money spent that is important; it’s the rate at which you spend it that counts.

Berger’s piece is a good reminder that Apollo is not coming back, barring some geopolitical, “Pearl Harbor-type” disaster. Thus, our task is to figure out how to slowly and affordably move beyond LEO. It is not a task suitable to arbitrary, irrelevant and impossible deadlines (e.g., humans to Mars in the 2030s). Spacefaring is a skill to be developed over decades, one that will return many benefits to a wide variety of space users, not simply for the scientists and not only for the “settlers.” Fortunately, more and more people recognize this reality and their ideas on how to implement such a movement are receiving serious consideration. Time will tell if reason prevails and we finally secure the ability to become true spacefarers.


Posted in Lunar development, Lunar exploration, space industry, space policy, space technology, Space transportation | 18 Comments

Two Radio Appearances – one past, one future

The media blitz to promote The Value of the Moon continues apace!  I was a guest yesterday (Wednesday, May 18, 2016) on the local NPR radio show, Houston Matters, discussing the book and the benefits of lunar return in general.  That appearance can be heard HERE.

Next week (Thursday, May 26, 2016), I am scheduled to appear on another local NPR show, The Jefferson Exchange, which is on from 8:00 am to 10:00 am Pacific time — I am scheduled to appear in the second hour (9:00 am to 10:00 am, PDT).  The show is live-streamed HERE.

UPDATE:  The podcast of my appearance on the Jefferson Exchange (Oregon public radio) can be heard HERE.

Posted in Lunar development, space policy, space technology, Space transportation | 5 Comments

The Space Launch System “Jobs Program”

NASA's Space Launch System -- A boondoggle?

NASA’s Space Launch System — A boondoggle?

An endlessly repeated media trope is that NASA’s new launch vehicle program, the Space Launch System (SLS), is some kind of entitlement boondoggle, a gigantic “make-work” project for the agency – a derision summed up through the use of the derogatory phrase, “jobs program.” Mocked as a “rocket to nowhere,” the current SLS program takes a substantial fraction of the agency’s exploration budget, about $2 billion out of the $8.5 billion per year designated for human spaceflight. It is designed to launch massive payloads (initially, about 70 metric tons to low Earth orbit, later up to 120 metric tons) into space, allowing the use of pre-fueled departure stages to send payloads beyond LEO into deep space. In contrast to some misleading promotional slight of hand, the SLS will not “take astronauts to Mars” but it could launch ready-to-assemble pieces for a human Mars mission into space (it would take between 8 and 12 launches of an augmented SLS to get a fully fueled manned Mars vehicle into space and prepared for departure to Mars).

Why does the SLS draw such invective? It is claimed by space advocates that commercial launch can do the same job as SLS at a fraction of the cost. Less often spoken directly, but clearly part of this meme, is that the part of the money NASA currently spends on SLS should instead be given to “New Space” private companies to develop and produce heavy lift launch services at lower cost (predominantly, but not exclusively, to SpaceX for their “Falcon Heavy” launch vehicle), thereby freeing up money that NASA could spend on hardware such as habitats, landers and other peripheral equipment needed for future human deep space missions.

How much of this story is true? Why are we building a rocket whose mission and destination are uncertain? Would it be better to use “privately developed” heavy lift launch vehicles (HLV) for human deep space missions? And why is a heavy lift vehicle desirable anyway? Could we not do the same thing using smaller launch vehicles and space-based propellant depots?

Human missions to deep space destinations require large amounts of mass in LEO because we need to protect and preserve the lives of the crew, take all consumables and fuel for the journey, and carry the equipment and supporting machines needed to carry out the mission objectives. The main benefit of using an HLV is that fewer individual launches are needed to get the same amount of mass into space – with fewer launches of larger payloads, a lower launch cost per unit mass is realized. A few larger pieces are more easily assembled in space than are a multitude of smaller ones. The cost buy down is mitigated somewhat by the assumption of more risk, as the loss of a single HLV will more greatly impact the mission campaign than the loss of a single smaller vehicle. But the benefits of fewer launches overall and less complex on-orbit operations are usually judged to outweigh these drawbacks.

There are also historical reasons for the use of an HLV. The agency’s experience with the Apollo program created the mindset among many mission designers that very heavy lift launch vehicles enable deep space missions. Even the Space Shuttle was sized to Saturn V proportions; although its gross liftoff weight (2000 metric tons) was comparable to Apollo-Saturn (2950 metric tons), it had much lower payload capacity because of the requirement for the 100-ton orbiter to return and be reused. With modifications, the Shuttle stack was able to use launch infrastructure created for the HLV Saturn V. Likewise, the existing Shuttle support systems and infrastructure are now being modified for the forthcoming SLS program.

Complaints against the SLS come from several streams of thought. It is argued that building the SLS is merely a program to make a rocket, but one having no place to go. In fact, this arrangement was exactly the course recommended by the 2009 Augustine committee, who contended that the agency should become “destination agnostic” and focus on a “Flexible Path,” in which systems would be developed first and destinations chosen afterwards. President Obama seemingly embraced that recommendation in 2010 by terminating the Moon as a destination for the American human space program. We were going to visit an asteroid instead (sometime), but finding no suitable targets for human missions, the “Asteroid Redirect Mission” concept was embraced. SLS can certainly support that mission, for what it is worth (which is not much).

Another criticism of SLS is that NASA should not be spending its budget making rockets – especially a new launch vehicle system – and instead should purchase launch services from the “private” sector. Certainly NASA does this already for robotic missions and satellites, so why not let commercially available launch vehicles serve the human program as well?

No existing commercial launch vehicle (nor any anticipated in the near future) has the launch capacity of the SLS. The largest extant commercial LV is the Delta-IV Heavy, which can put a bit less than 30 metric tons into LEO, less than half the capacity of the core SLS. Critics of SLS claim that the advent of SpaceX’s “Falcon Heavy” vehicle will render SLS unnecessary, but that launch vehicle was announced in 2011 and we have yet to see even a structural test article of it. It is stated that this vehicle will be able to put about 53 metric tons into LEO, significantly less than the 70 ton payload of the SLS core. The acceptance of this lower performance by its advocates is predicated on a proclaimed vastly lower cost, but as no Falcon Heavy has yet to fly, we have no idea of what its cost would be. Moreover, there are good reasons to question the technical viability of the Falcon Heavy. Released design details show that it consists of 3 Falcon 9 rockets, strapped together and burning simultaneously. Such a configuration would consist of 27 engines, all of which must burn for the same duration and thrust level. The Soviet Union once had a launch vehicle (the N-1) that had 30 rocket engines; it flew four times, each flight ending in a catastrophic fireball, largely as a result destabilizations following an engine-out condition.

The problem lies not with the rocket that we are building – it lies with the mission that we do not have. SLS did not cause the destinations for human spaceflight to go away – that was a considered and deliberate decision by the current administration. In response, the Congress (who had twice voted their overwhelming support for the goals of lunar return, in two different authorization bills) mandated the construction of SLS, largely because NASA was dragging its feet on doing anything about it. Congress was concerned that an important national resource – the industrial and technical infrastructure (including its human resources) to build and fly HLV rockets – was being lost through neglect and attrition. They asked the agency to come up with a specific design for an HLV system but received no cooperation. So, they consulted external technical experts to derive the specifications of a general purpose HLV and mandated this design in the authorization. Its purpose was to make sure that the vehicle would be built and to assure that our national capability in this area would not be lost.

Congress reasoned that the SLS could be used for any deep space mission a future administration might consider. The reinstatement of the lunar surface as a prime candidate for future missions is clear from the language of the 2010 NASA Authorization, which specified the technical details for SLS, and at the same time, listed a variety of destinations for America’s human spaceflight program. In the preamble to that bill, cislunar space is listed as a destination in 4 of the 7 provisions of that section, while the presence of humans on the lunar surface is mentioned in 3 of those sections. These declarations were ignored by the agency.

A final ridiculous criticism of the SLS program is that it is simply a “jobs program” for NASA. Well, of course it is! Federal programs create jobs for the people who bring them to fruition. The unstated implication of the “jobs program” epithet is that it is useless “make-work,” like a work crew digging a ditch and then re-filling it, all simply to collect a paycheck. But “jobs programs” are now a fundamental part of our national existence (Try Googling the phrase “jobs programs” and see how many hits you get). However, some federal “jobs” aren’t make-work, but instead create or maintain national capabilities that are determined to be important or vital to the security and prosperity of the nation. We supported an elaborate industrial and technical defense establishment for the 50 years following World War II not to “make jobs” but because we believed that such capabilities were critical to the national interest. The SLS program was created because it was feared that once lost, the ability to make and operate a heavy lift launch system might vanish forever. There are always repercussions when you create a power vacuum.

No one but NASA (Saturn, Shuttle) and the Soviets (Energia) have successfully operated an HLV System. Such a system is needed for deep space human missions – at least until we can transition to a space-based transportation system provisioned by lunar resources, rather than one which requires that everything be brought up from the deep gravity well of Earth. The SLS is not perfect – it certainly isn’t the system I would have chosen to build (Shuttle side-mount could have been flying now for a fraction of what we have spent to date on SLS). But it exists and it will provide a capability that we can use to go back to the Moon and to the planets beyond.

Posted in Lunar development, Lunar exploration, space industry, space policy, space technology, Space transportation | 97 Comments

Lunar Resources: Beyond the Fringe

A new, somewhat philosophical post up at Air & Space on the recent Royal Astronomical Society meeting in London on using space resources.  By the way, that great, appropriate title (alluding to the British comedy group) was a suggestion of my editor at Air & Space, Tony Reichhardt.  Thanks, Tony!

The meeting in London was a good one, with lots of interesting presentations.  Comments on the post are welcome.

On another note, I will be on The Space Show this coming Sunday (May 1, 2016) at 2:00 pm Central time, discussing my new book, The Value of the Moon.  Feel free to listen and call in the show with questions or comments.

Posted in Lunar development, planetary exploration, space industry, space policy, space technology, Space transportation | 13 Comments