Dusty Space Around the Moon

A new post up at Air & Space on LADEE results for the lunar dust exosphere.  Space is not empty!  Comment here, if desired.

Posted in Lunar exploration, Lunar Science | 6 Comments

More Than Life Itself: Some Heretical Thoughts

The Mars rock with the bugs -- a scanning electron microscope image of alleged fossil bacteria in a martian meteorite.  These features are extremely small (note scale, in nanometers, i.e., billionth of a meter).

A Mars rock with bugs?  Scanning electron microscope image of alleged fossil bacteria in a martian meteorite. These features are extremely small (note the scale, in nanometers, i.e., a billionth of a meter).  NASA image.

In a letter to Space News, current CEO of The Planetary Society, Bill Nye, expounds on his belief that the search for life on Mars is the both the principal rationale and objective of human spaceflight. Many members of the Planetary Society subscribe to this belief, as do many others in the space advocacy field. Certainly, upon reading through various decadal studies of the planetary science community, it quickly becomes apparent that searching for extraterrestrial life is the major goal of space exploration and other topics are noted as to the degree with they contribute to the search for life. Where does this deeply ingrained idea come from?

Setting aside for a moment the decades of science fiction dealing with invaders from Mars and a variety of BEMs (Bug-Eyed Monsters) from space, this quest for life (as a driving imperative for the space program) took much of its impetus from Carl Sagan (1934-1996). Sagan, who popularized space science in his TV series Cosmos, is renowned for speaking and writing about the possibility of extraterrestrial life. Sagan became famous by pontificating on the “billions” of planetary systems that must exist in our galaxy, explaining (on the basis of our scientific understanding of how life arises) that many millions of them must be teeming with life. The science fiction concept of extraterrestrials was thus elevated and dignified by a seemingly irrefutable scientific argument, and this combination steam-rolled NASA into making the Quest for Life Elsewhere (QFLE) a cornerstone of its rationale for existence and its space exploration strategy. NASA’s quest to inspire (and let loose the floodgates of funding) saw gold in Sagan’s appeal to the public.

From our earliest recognition that Mars was a planet similar in size and composition to the Earth, it has harbored humanity’s hopes for the discovery of extraterrestrial life. Dreams of “life” were dashed when the initial flyby mission showed a cold, cratered surface, more like the Moon than like the Earth – a desolate Mars with an extremely thin, carbon dioxide atmosphere. In 1971, the Mariner 9 orbiter rekindled hopes of “life” when it showed channels as natural features on the surface. These landforms are difficult to explain by any process other than flowing water, and water is a prerequisite for life. Two Viking landers were launched to Mars in 1975, configured with the express objective of searching for evidence of (microbial) life in the martian soil. Nothing was found, except for some strange and unexpected soil chemistry. No organic matter was found in the soil at the parts per billion level, suggesting that not only was there no life there, but that some chemical process on the surface was destroying carbon compounds that did exist (we knew that they were being deposited on the planet by meteorite impact).

Thus, for the twenty years following Viking, Mars was considered dead, although many speculative efforts tried to envision how life might have arisen there in the past and then went extinct, as the climate changed from an early wet, warm and thick atmosphere to the current cold, dry, and thin conditions. Another round of robotic missions to Mars in the 1990s rekindled interest in possible life – or at least fossils – that could exist there. Since then, we have sent some type of robotic probe to Mars at nearly every launch opportunity (which occur every 26 months). Each mission has discovered that: a) Mars once had liquid water near the surface; and b) could have developed life. Each announcement of these astounding results is accompanied by much press hoopla as the again “new” findings are heralded and papers are published.

Concurrent with these findings was the astonishing result that perhaps life had already been found. Scientific study of the meteorite ALH 84001 showed extremely small rod-like forms that look similar to terrestrial bacteria. This space rock is one of a group thought to have come to Earth from Mars, blasted off the planet by an ancient impact. If all of these inferences were correct, then we may have already discovered fossil life from Mars! However, these interpretations are not universally accepted – indeed, they are not accepted by most of the scientific community today. Thus, the QFLE continues.

Just why is the idea of martian microbes so compelling? Although motivations vary, many in the space community have embraced the QFLE in relation to Mars because it has been good for business. The discovery of the possible fossils in a martian rock in 1996 inspired and spawned an entire Mars exploration program, one responsible for the launch of 11 American and 7 international spacecraft (and still counting) to the red planet over the last 20 years. Each mission repeats the new discovery that Mars “probably” was conducive to life early in its history. We can’t stop now – this elusive goal is just around the next bend!

Two issues present themselves in regard to the QFLE, especially as applied to Mars exploration. First, is the QFLE a valid rationale for a space exploration program? Second, if extraterrestrial life were found there, so what and what then?

Clearly, as they have embraced it as their rationale for space exploration, NASA is endorsing the QFLE. I have two issues with this adoption, one practical and one philosophical. On the practical side, if you define your objective around the search for life and you don’t find it, by definition, your mission is a failure. One cannot prove a negative, so not finding life or evidence of former life does not prove that it never existed. The only response QFLE advocates have to such a negative result is that “we just haven’t looked in the right place” and thus, additional missions or experiments are needed. This gambit works for a while (at least, it has worked up until now), but eventually, the public will get wise and decide that enough is enough. Thus, using the QFLE as a rationale for spaceflight contains within it the seeds of its own demise, as finding life or evidence for its past existence is an unlikely occurrence (it has yet to happen in 50 years of planetary exploration).

On the philosophical side of the issue, I contend that the QFLE, while a legitimate scientific inquiry, should not be the all-consuming justification for our space endeavors. It is certainly no more important than all of the other questions about the origin, history and evolution of the planets that we have developed over the years. By focusing on the QFLE and making all other topics subservient to its needs, we preclude opportunities for discoveries and breakthroughs in fields unrelated to biology. But more insidiously, by questing for life, we are attempting not to make a new discovery, but to confirm an existing dogma. Virtually all scientists subscribe to the materialist paradigm for the origin and development of life, viz., that given the right chemistry and environment, life will arise and over geological time, it will evolve into many different, ever more complex organisms. And if, or when, extraterrestrial life is found, what will have been proven? That our materialist model is correct? What scientist doubts that now?

By necessity, most planetary scientists follow the money and because special pots of funding have been set aside for the study of extraterrestrial life, many orient their research in that direction (one must eat, after all). But that funded scientific “interest” is not a product of the free marketplace of ideas deciding which topics are most important, but rather the directed result of a bureaucratic decision.

According to Nye,

“Everyone…..would agree that if we were to discover evidence of ancient life on Mars, let alone if we were to discover something still alive there, it would change the course of human history.”

Well, I don’t agree. I believe that the really important breakthroughs and insights of science tend to come from totally unexpected connections and conceptual breakthroughs, not from some finding that everyone has been expecting for the last 100 years. By making the QFLE the central objective that propels our national space program, we’re ignoring other objectives of equal (if not greater) importance and significance. Moreover, we’ve set the program up for an abrupt termination when the long-sought evidence for life fails to turn up. But even if life or evidence of former life is found, all we have done is to validate our existing prejudices. I sense that this realization is gradually creeping into the consciousness of others in the space community, as some advocates of human Mars exploration are emphasizing habitation and settlement, rather than the search for martian life.

The universe is big and displays many interesting phenomena for us to study. To make the QFLE the main focus of our scientific exploration efforts is to ignore or give short shrift to other equally engaging problems. It also has the potential to cause a loss of political support for the program – the public “excitement” that it seeks.

NASA and Congress are always asking: What will inspire the people? We don’t need another Sagan – what we need is a permanent path to everywhere in space. The quest for everything can begin once our leaders move beyond believing that we need gurus and gimmicks to inspire and sustain a great space program.

Posted in Lunar exploration, Philosophy of science, planetary exploration, space policy | 28 Comments

China and the “dark side”

I have a new post up at Air and Space discussing a possible Chinese lander/rover mission to the far side of the Moon — what it could tell us and why it’s significant.  As always, your thoughtful comments are solicited.

Posted in Lunar exploration, Lunar Science, space policy, Space transportation | 19 Comments

Going Back to the Moon

I recently was interviewed by Space.com reporter and author Leonard David.  The interview is now posted at their web site.  Comment here if interested.

Posted in Lunar development, Lunar exploration, space policy, space technology, Space transportation | 11 Comments

Lunar Distractions

I have a new post up at Air & Space on recent NASA comments on the possible use of the Moon in a human mission to Mars architecture.  Comment here, if you’d like.

Posted in Lunar development, Lunar exploration, planetary exploration, space policy, space technology, Space transportation | 14 Comments

Dick Nixon’s Space Program

Presidential decisions and the post-Apollo space program

Presidential decisions and the post-Apollo space program

Richard Nixon is the President all good liberals love to hate – the Darth Vader of American politics: paranoid, suspicious, duplicitous and just plain evil. It should come as no surprise then that his legacy in regard to the American civil space program would come under critical scrutiny by those who idolize his opposite number, a charming, virtuous and courageous John Kennedy. JFK sent America to the Moon on a towering pillar of flame, capped by the sleek, white needle of the thundering Saturn V. Nixon consigned us to permanent space mediocrity, lumbering our way to orbit on the short, squat ugly Space Shuttle, a vehicle that brings to mind nothing more than the adage that a camel is a horse designed by a committee. Kennedy is remembered as the cool kid on the block, the budding rock star; Nixon is recalled as the old man on the corner, yelling at you to turn down your stereo and get off his lawn.

The new book by John Logsdon, the “Dean” of American space policy historians, is titled After Apollo? Richard Nixon and the American Space Program. It is an engrossing read, but perhaps not in the way its author intended. As I made my way through the narrative, I continually recognized a different way to interpret events. That is not necessarily a criticism of the book per se, but as Logsdon is apparently intent on drawing “policy lessons” from the history of the decision to build the Space Shuttle, we should carefully consider exactly what those lessons might be.

The familiar story of the post-Apollo space program is well known to space advocates. As it is told in some circles, the brilliant achievement of the lunar landings was squandered by the skinflint Nixon in deciding against a manned mission to Mars (the next obvious goal). To his credit, Logsdon does not advance this popular mythology; his take is more subtle. He carefully outlines how Nixon took full advantage of the international prestige and goodwill that America received from the success of Apollo 11, but notes that Nixon did not have any particular interest in or love for the space program in general (but then, neither did Kennedy). How to move forward on a constrained and limited budget was the fundamental problem the American space program faced after Apollo. That the budget would be lower than Apollo (and in fact, much lower, although the exact amount was unknown at the time policy decisions were made) was a foregone conclusion. In September of 1969, a report from the Space Task Group (chaired by Vice President Spiro Agnew) advocated that a manned Mars mission should be America’s next major space goal. But that program direction was a non-starter in the White House, a non-starter on the Hill and a non-starter with the public.

Given this level of ambivalence, what was possible for America’s civil space program in the post-Apollo era? As more had to be done with less money, many believed that lowering the cost of space access was critical. This led to the idea that a reusable space plane would assure both lower costs and routine access to orbit. Although routine flight was achieved with the Shuttle, the technology needs for low cost were not fully understood and never really possible. Mythology has it that the completely reusable, winged booster + shuttle design of Max Faget was passed over for a cludgey, partly reusable drop-tank camel design of the eventual Shuttle. In fact, the fully reusable design was a “bridge too far” and would not have worked then (and even today, its feasibility is questionable). But even the partly reusable Shuttle could not live up to the high hopes for a low cost option of the “sophisters, economists and calculators” (in Edmund Burke’s memorable phrase).

In great detail, Logsdon traces the debate within the Executive Branch, an ongoing argument between NASA, the White House Science Advisor (later OSTP, Office of Science and Technology Policy) and the Bureau of the Budget (later OMB, Office of Management and Budget). To sell the Shuttle, NASA had to recruit multiple customers (most famously the Department of Defense). Logsdon notes that bringing DoD onboard levied specific requirements on payload sizing and cross-range capability (i.e., the ability to move the landing trajectory left or right of its descent path). One myth of Shuttle design is that this cross-range requirement led to the adoption of the large “delta-wing” configuration of the orbiter (increasing its mass and cost greatly). But NASA engineers had decided that this configuration helped to alleviate thermal issues during reentry and would have gone to something similar anyway.

The chronology and description of this decision process is valuable and I learned much from this section. The principal weakness of the book is in its conclusions, which are all too clearly colored by Logsdon’s disdain for Nixon. Logsdon levies the blame on Nixon’s shoulders for not setting a visionary, exciting space goal for the nation. But it is “perfectly clear” from his own narrative that there was no mood in the country for anything more than Shuttle. Moreover, you will search the book in vain for any detailed discussion of the opinions and influence of liberal Democrats in Congress regarding the space program (which were highly negative in the extreme). People like Senate Majority Leader Mike Mansfield, Senators Proxmire, Mondale, and most notoriously (the brother of JFK) Ted Kennedy, all made negative and disparaging statements about the space program around the time of the first Moon landing. Nixon’s presidency spanned six Congressional terms, all of which transpired under majority control of both houses of Congress by the Democratic Party.

Logsdon criticizes Nixon for using the space program as a political pork barrel and vote-getter, with California’s aerospace industry being a major beneficiary of the Space Shuttle program (Nixon needed to carry the state in the 1972 election). But space pork didn’t start with Nixon; the location of the NASA Manned Spaceflight Center in Houston derives from the influence of two powerful southern Democrats in Congress, Lyndon Johnson and Albert Thomas of Texas. Nixon proposed much lower space budgets than those of the Apollo days, but most forget (and Logsdon doesn’t mention) that much of the Apollo era spending went to build permanent infrastructure (such as launch, assembly, and testing facilities), assets used by all other subsequent space programs. By design, those sunk costs were never to have been repeated. Logsdon repeats the standard line that “Nixon stopped building the Saturn V” but it was President Johnson who shut down Saturn production in 1968 after a review determined that we already had the number of vehicles necessary to accomplish the goal of a lunar landing.

Logsdon concludes that the decision to build the Shuttle was a “policy mistake,” but one should consider the alternatives. Apparently, Logsdon would have favored the “small shuttle-glider” design proposed by OMB during the policy debate. What if that path had been taken? We would have found that many of the technologies needed for a full-sized shuttle were more difficult to perfect than we thought. Besides, the shuttle-glider prototype was nothing more than the current “Flexible Path” approach (i.e., get technology first, destinations and goals later). Would that have led to the building of more capability or less? Perhaps we might have gone back to the capsule and big rocket days of Apollo (as we have apparently done now), but that would have meant no space station and it most certainly would have meant no manned Mars mission (the elusive Holy Grail space program that has kept us from doing anything of lasting value beyond LEO for more than forty years).

A hidden gem in the book (page 214) deserves special mention. William Niskanen, an analyst with OMB, describes two libertarian ideas – changes he believed would inject more money into the space program and help unburden the taxpayers. One idea was to bring rocks back from the Moon and sell them to the public, using those funds to support further space efforts – a plan, while inventive, that would not have generated anywhere near enough money. Niskanen’s other idea was for NASA to get out of the launch and spaceflight business and let the private sector develop the next generation of launch capability. Then, the federal government could contract for launch services from American business. In response to this suggestion, legendary NASA engineer and manager George Low told Niskanen that “the reason for not doing it is that it simply won’t work; if the idea is to cancel the space program, this might be a way to do it.” I almost bust a gut with laughter at that passage.

Laying the blame for 40 years of perceived mediocrity in space at Nixon’s feet may be satisfying, but it’s not particularly enlightening. The reason that there was no visionary goal for space after Apollo is because Apollo was not about space – it was about beating the Soviet Union in the Cold War. Once accomplished, there was no need for any crash space program, especially one as difficult and expensive as a manned Mars mission. Thus, NASA fell back on the classic von Braun architecture: the systematic extension of human reach into space through the consecutive building blocks of a shuttle-station-moon tug-Mars mission. Shuttle was intended as the first part of an extensible, permanent space faring system; it was never meant to be the “ultimate space vehicle” but rather, the first leg of a long journey. As for money for space, 40 years of funding at less than one percent of the federal budget might suggest to an objective observer that this level of spending is politically sustainable (even if it’s not the level that space buffs would want). The corollary to this recognition is that it is our challenge to construct an approach that makes progress with such funding levels, not to whine about our belief that it isn’t enough.

Still, this new book is worth reading, with the reservations expressed above. I cannot help but think that Logsdon’s conclusions – steeped in Beltway conventional wisdom – are driven more by his opinions of the presidency of Richard Nixon than by an objective evaluation of the historical facts surrounding Shuttle development. That the development of the Space Shuttle was a “policy mistake” is his long-held opinion and certainly one way to read the record. But other readings are possible and for all of its faults, that space program of recent memory was arguably better than the one we have now. I couldn’t help but think of an image: Dick Nixon’s space program as Pat Nixon in her good Republican cloth coat; Jack Kennedy’s space program as Marilyn Monroe, seductive in a mink coat.

Posted in Lunar exploration, space industry, space policy, Space transportation | 26 Comments

Science Publishing – Some Skepticism Required

I have a new post up at Air & Space about the current scandal of fake papers being published in scientific journals, the breakdown of the peer review process, poor scholarship among some scientists and “expertise” derived from Google searches.  Comment here,  if so inclined.

You may have noticed that I haven’t been blogging here much lately.  I am busy with the manuscript of my next book, due at the publisher in a couple of months.  I’ll be back with more commentary on space policy and programs soon.

Posted in Lunar Science, Philosophy of science | 32 Comments

Yutu on the Moon and the Cost of Mars

A couple of new posts on other sites that might be of interest to the readers of this blog.

Over at Air & Space, I discuss the new science results from the Chang’E-3 Yutu rover investigations.  Comment here, if you are so inclined.

Also, Glenn Smith and I have an op-ed at Space News on the likely cost of a human Mars mission.  Comments here are welcome.

Posted in Uncategorized | 32 Comments

Fossils on the Moon?

Perhaps.   I discuss in a new post up at Air & Space magazine.  Comment here if you’d like.

Posted in Lunar exploration, Lunar Science, planetary exploration | 7 Comments

Regulating Business on the Moon

Lunar outpost under construction using 3-D printers to fabricate infrastructure.  NASA image.

Lunar outpost under construction using 3-D printers to fabricate infrastructure. NASA image.

The U.S. Federal Aviation Administration (FAA) has decided to “authorize” operations on the Moon as part of the process of granting a license for the launch of a commercial payload to space. This launch-licensing scheme affords advance federal government recognition of planned commercial activities on the lunar surface, specifying an “exclusion zone” within which other payloads would not be permitted. This decision by the FAA is heralded as a “first step” towards the specification of private property rights for the Moon.

Although much has been discussed over the past few years about mining the Moon for materials, metals, nuclear fuel and rocket propellant, all of these discussions focus almost exclusively on the technical issues associated with resource extraction, transportation and use. Little has been offered on the legal issues involved in lunar (or an extraterrestrial) mining – staking a claim. This legal vacuum exists for a very straightforward reason: no one knows the legal status of commercial space mining and planetary surface activity.

Several international treaties, the most pertinent of which is the 1967 U.N. Outer Space Treaty (OST), set the current legal regime for space activities. The OST was signed by 129 countries, including all of the major space faring nations. The treaty bans nuclear weapons in space and prohibits any nation from establishing territorial claims on extraterrestrial bodies. This formulation left open the question of private development and ownership, although the treaty states that “Outer space, including the Moon and other celestial bodies, shall be free for exploration and use by all States without discrimination of any kind, on a basis of equality and in accordance with international law, and there shall be free access to all areas of celestial bodies.

Note well – “free for exploration and use by all States…” That wording would appear to guarantee the rights of a nation to mine the Moon, extract a product, and then – what? Certainly one would suppose that this language ensures that a government facility could manufacture rocket propellant to use in its own vehicles. But does it permit a private company based in that nation to make the same product and then offer it for sale on the open market? Despite the FAA decision, that question is unresolved.

In fact, it’s not completely clear just what issue is resolved with the new FAA ruling. Certainly they can issue restrictions on American companies in regard to impinging upon the activities of another American company, say for example, Moon Express landing a vehicle near an installation of Bigelow Aerospace inflatable habitats on the Moon. But who else is obliged to observe those restrictions? International companies that launch from their own soil do not require FAA commercial licenses. Unless some reciprocal agreement is reached with all these nations, their private companies do not have to respect the access and “control zone” rights of our nation’s companies.

The situation becomes even murkier when considering the possible interactions of a private American company on the Moon and the national representatives of a foreign power. Suppose another country (e.g., China) decided (for whatever reason) to land their government-funded, military-controlled spacecraft on lunar territory that the FAA had previously “set aside” for the exclusive use of Bigelow Aerospace? Legally, the FAA license has nothing to do with China, who are not bound to observe any restrictions. When international relations are peaceful and productive, conflicts are unlikely to arise. But political situations change, sometimes at the drop of a hat, and certainly on timescales shorter than industrial development cycles.

Prime locations on the Moon – as on any other extraterrestrial object – are not limitless, and access to and use of the most desirable and valuable sites for resource prospecting and harvesting may be contentious. In terms of water production (rocket fuel and life support consumables), ideal sites are in zones of enhanced duration sunlight (“quasi-permanently lit areas”) near the Moon’s poles, proximate to permanently shadowed regions (deposits of water ice). At such locales, electrical power can be continuously generated in order to extract the nearby water ice. There may be only a few dozen zones where initial ice harvesting facilities may be operated with reasonable efficiency (more prospecting data will give us a better picture). If this turns out to be the case, then who gets the rights to produce the product? What constitutes staking a claim? First come, first serve? Or does “might” make right?

This issue leads us to the consideration about the presence and role of the U.S. federal government in space. I have contended previously that a strong federal presence in space is necessary to ensure that our rights are established and that our values be protected and promoted. In the hypothetical context mentioned above (Bigelow vs. China), a single American company facing a determined nation-state is not likely to prevail in a manner favorable to the interests of free market capitalism. Legal recourse on Earth would be limited (more likely, non-existent) and it is also unlikely that the United States would go to war over the infringement of some corporate plot of land on the Moon – at least during the early stages of commercial space. However, if the federal government establishes a presence, it gives notice to the world of our national interests there. Such a presence makes the infringement of property and access rights of American corporations both less likely to occur in the first place – and more easily resolved if such a situation arose.

There is no reason to assume that all nations will voluntarily cooperate in space, if for no other reason than nations do not behave this way on Earth. Sometimes national rights of way and access to resources must be guaranteed by physical presence, backed up with threat of force. This is the way of life at sea here on Earth and the reason that we have a blue-water navy – not only to defend our country, but also to project power and protect our national interests abroad. Historically, the navy has conducted exploration and goodwill tours in peacetime, and power projection in times of tension and war. A space navy could do likewise as humanity moves outward into the Solar System.

For these reasons, I think that the new FAA letter doesn’t deal with the identified need for articulation of space property rights, but rather, seems to be a way to put off such a discussion for a later time. Ultimately, we will need to face up to our national and collective responsibilities to protect American commerce wherever it occurs. Given the risk being taken in opening up space to commerce, companies need the assurance of government’s protection of their investment. In the very near future, our theater of operations will include cislunar space. The idea that the “private sector” alone can develop near Earth space is not realistic. It remains a dangerous, unpredictable world and clear-thinking leaders will plan for future confrontations, if only so that they may be avoided. Any display of weakness will be exploited – and not to our benefit.

Posted in Lunar development, space industry, space policy | 32 Comments